

Factorial notation

Factorial notation Properties

✓ By convention
$$0! = 1$$

$$\checkmark n! = n \times (n-1)!$$

$$(n-1)! = (n-1)\times(n-2)\times...\times2\times1$$

$$n! = n \times (n-1) \times...\times2\times1$$

$$(n-1)!$$

Example:

$$6! = 6 \times 5!$$

 $10! = 10 \times 9!$

$$\checkmark$$
 (kn)! \neq kn!

$$(3\times2)! = 6! = 6\times5 \times 4 \times 3 \times 2 \times 1 = 720$$

 $3\times2! = 3\times2 \times 1 = 6 \neq 720$

$$\checkmark$$
 $(k+n)! \neq k! + n!$

$$\checkmark$$
 (k×n)! \neq k! × n!

$$(3\times2)! = 6! = 6\times5 \times 4 \times 3 \times 2 \times 1 = 720$$

$$3! \times 2! = 3 \times 2 \times 1 \times 2 \times 1 = 12 \neq 720$$

$$(3+2)! = 5! = 120$$

$$3!+2! = 6+2 = 8 \neq 120$$

Permutation Definition

A permutation is an arrangement of all or part of a set of objects, with regard to the *order* of the arrangement.

Example:

Given the set of 3 letters {A,B,C}.

How many ways can we arrange 2 letters from that set?

$$A - B - C$$

6 permutations

But how to calculate the number of permutations in each case???

1 Without repetition

000

How many numbers of 2 distinct digits can be formed from the above list of numbers?

$$3 \times 2 = 6$$

Number of possibilities of the first digit

First digit Second digit

Number of possibilities of the second digit

6 possibilities

How many numbers of 2 distinct digits can be formed from the above list of numbers?

$$3\times2=6$$

Number of possibilities of the first digit

3 {1;2;3}

1 Without repetition

000

How many numbers of 2 distinct digits can be formed from the above list of numbers?

$$3\times2=6$$

Number of possibilities of the first digit

1 Without repetition

How many numbers of 2 distinct digits can be formed from the above list of numbers?

$$3 \times 2 \equiv 6$$

Second method:

You can use the following formula:

$$A_n^r = \frac{n!}{(n-r)!}$$

In this case: n = 3; r = 2

$$A_3^2 = \frac{3!}{1!} = \frac{6}{1} = 6$$
 possibilities.

Remark: the notation ner is same as A.

Without repetition

Application

- a) of 4 distinct digits?
- b) of 6 distinct digits?

1 Without repetition

Application

How many permutations can be formed:

- a) of 4 distinct digits?
- b) of 6 distinct digits?

a) Permutation of 4 digits out of 6 digits, without repetition so: $A_6^4 = \frac{6!}{(6-4)!} = \frac{720}{2} = 360$

Or

- 1 Without repetition
 - **Application**
 - 028
 - 456

b) Permutation of 6 digits out of 6 digits, without repetition so: $A_6^6 = \frac{6!}{(6-6)!} = \frac{720}{1}$ = 720
Or

6 5 4 3 2 1
$$=6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720$$

- a) of 4 distinct digits?
- b) of 6 distinct digits?

With repetition

How many numbers of 2 digits can be formed from the above list of numbers?

Number of possibilities of the first digit

3 {1;2;3}

With repetition

028

How many numbers of 2 digits can be formed from the above list of numbers?

Number of possibilities of the first digit

With repetition

How many numbers of 2 digits can be formed from the above list of numbers?

Permutation with repetition, with order is called r-lists: the number of possibilities is n

In this example: n = 3 and r = 2So 2-lists of $3^2 = 9$ possibilities

Number of possibilities of the first digit

With repetition

Application

456

- a) of 4 digits?
- b) of 6 digits?

With repetition

Application

000

456

a) Permutation of 4 digits out of 6 with repetition: 4-lists

The number of permutations is: $6^4 = 1296$

Or

- a) of 4 digits?
- b) of 6 digits?

With repetition

Application

b) Permutation of 6 digits out of 6 with repetition: 6-lists

The number of permutations is:

$$6^6 = 45656$$

Or

- a) of 4 digits?
- b) of 6 digits?

Summary

- > Permutation is an arrangement with regard to the order.
- Number of permutation without repetition of n elements is: n
- Number of permutation without repetition of r elements out of n elements (r < n) is: $nPr = A_n^r = \frac{n!}{(n-r)!}$
- Number of permutation with repetition of r elements out of n elements $(r \le n)$ is: n^r (r-lists)

Applications

• In a race of 10 runners, how many ways can the first, the second and the third runners arrive?

3 places: r = 3

10 runners : n = 10

Permutation without repetition: $P_n^r = \frac{10!}{(10-3)!} = \frac{10!}{7!} = 720$ possibilities

10 9
$$8 = 10 \times 9 \times 8 = 720$$

Permutation Applications

2 How many outcomes are there upon tossing a coin 3 times?

```
3 \text{ times: } r = 3
```

Each time, there are 2 possibilities: Head H or Tail T : n = 2

Permutation with repetition: $n^r = 2^3 = 8$ possibilities

$$\begin{vmatrix} 2 & 2 \end{vmatrix} = 2 \times 2 \times 2 = 8$$

Applications

- 3 boys and 4 girls are to be seated on a bench next to each other in a row.
- a) In how many ways can they sit?

7 places and no repetition Permutation of 7 persons is 7! = 5040 ways

Applications

- **3** boys and 4 girls are to be seated on a bench next to each other in a row.
- b) Calculate the number of ways they can be seated knowing that:
 - 1. The boys are next to each other.

В	В	В	G	G	G	G	$=3\times2\times1\times4\times3\times2\times1=144$
G	В	В	В	G	G	G	$=4\times3\times2\times1\times3\times2\times1=144$
G	G	В	В	В	G	G	$=4\times3\times3\times2\times1\times2\times1=144$
G	G	G	В	В	В	G	$=4\times3\times2\times3\times2\times1\times1=144$
G	G	G	G	В	В	В	$=4\times3\times2\times1\times3\times2\times1=144$

Applications

- PowerPoint Labs
- **3** boys and 4 girls are to be seated on a bench next to each other in a row.
- b) Calculate the number of ways they can be seated knowing that:
 - 1. The boys are next to each other.

Suppose that the 3 boys are 1 group:

So permutation of 1+4=5

The number of permutations of 5 elements is 5!=120The number of permutations of the boys in the group is 3!=6So the total number of permutations is $120\times6=720$ possibilities

Applications

- 3 boys and 4 girls are to be seated on a bench next to each other in a row.
- b) Calculate the number of ways they can be seated knowing that:
 - 2. No two of the same gender are beside each other.

$$\mathbf{G}$$
 \mathbf{B} \mathbf{G} \mathbf{B} \mathbf{G} \mathbf{B} \mathbf{G} =3×2×1×4×3×2×1=144

Applications

- **4** Given the digits: 0 1 2 3 4 5 6
- 1) How many 4 digit numbers can be formed? Permutation with repetition of 4 out of 7:

Applications

- **4** Given the digits: 0 1 2 3 4 5 6
- 2) How many 4 distinct digits can be formed?

Permutation with no repetition of 4 out of 7 But first digit must be $\neq 0$ so:

6 6 5 4 =
$$6 \times 6 \times 5 \times 4 = 720$$
 numbers

Second method:

There is condition on the first digit so:

first digit: 1 out of 6 (1-2-3-4-5-6)

The other digits: 3 out of 6 (0 and the 5 remaining digits out of the other 6)

$$A_6^1 \times A_6^3 = 6 \times 120 = 720$$

Applications

- **4** Given the digits: 0 1 2 3 4 5 6
- 3) How many 3 distinct digit numbers can be formed such that the first digit is even and the last digit is odd?

Permutation without repetition of 3 out of 7 but with conditions:

```
3 5 3 = 3 \times 5 \times 3 = 45 numbers \neq 0 {1;3;5} {2;4;6}
```

Second method:

First digit: 1 out of 3 so A_3^1

Third digit: 1 out of 3 so A_3^1

Second digit: 1 out of the 5 remaining digits: A_5^1

So the number of possibilities is: $A_3^1 \times A_5^1 \times A_3^1 = 3 \times 5 \times 3 = 45$ numbers

Applications

- **6** In how many ways can the letters of the given words be arranged?
- 1) math

$$\frac{4!}{1! \times 1! \times 1! \times 1!} = 12$$

2) facebook

$$\frac{8!}{1! \times 1! \times 1! \times 1! \times 2! \times 1!} = 20160$$

3) Mississippi

$$\frac{11!}{1!\times 4!\times 4!\times 2!} = 34650$$

Number of ways of arranging n letters of a word is:

n! repetition

